Dervla O’Malley APEX

  • You are here:

Dervla O’Malley

Dervla O’Malley is a lecturer in the Department of Physiology, University College Cork and a faculty member in the APC Microbiome Institute, Cork, Ireland. Dervla graduated with a first class honours degree in Biomedical Sciences from the University of Ulster prior to undertaking a PhD in the Division of Neurosciences at the University of Dundee, Scotland.  Her research career has included a year as a visiting scholar in the University of Nevada, Reno, US; post-doctoral positions in the University of Cambridge and the University of Edinburgh prior to taking up a senior post-doctoral position in the APC Microbiome Institute.  Since establish her research group in the Department of Physiology UCC in 2011 she has focussed her research on investigating cellular signalling evoked by cytokines and endocrine hormones in the enteric nervous system and cross-kingdom communication between microbes and the host nervous system. She is also interested in cognitive dysfunction in neuromuscular disorders. She has published two book chapters, one invited editorial, six review articles, thirty three research papers and more than 75 abstracts and has a H-index of 20. Her research is currently supported by funding from the Irish Health Research Board.

Research Interests –Understanding the mechanisms of inter-kingdom signalling between gut microbiota and the host nervous system.

Trillions of bacteria reside in human colons and are important for normal gut and immune development. However, it has become apparent that our microbes also influence cognitive behaviour, and altered microbial signatures have been linked with both gastrointestinal and neuro-cognitive disorders. However, the mechanisms of interspecies communication and the contribution of the immune, endocrine and neural systems in the microbe-gut-brain axis are not yet understood. A multidisciplinary approach with cutting-edge goals and novel methodological strategies is required to reveal the mechanisms underlying this dialogue.

This study will use a novel electrophysiological technique developed in my lab, to record real-time neural activity in the vagus nerve evoked by microbial signals in the distal colon, where the density of microbes is highest. Pilot studies have identified glucagon-like peptide 1 (GLP-1) secreting L-cells as potential cellular translators of microbial signals into a language understood by the host nervous system. This study will investigate the role of these electrically excitable enteroendocrine cells as potential signalling pathways between luminal products and their mammalian hosts.

Contact details: E-mail: